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The paper presents implementation of a viscoelastic boundary condition to Yade software.
The implemented boundary condition constraints linear displacements of bodies by applying
a reaction force resulting from a solution of the Burgers rheological model. This work presents
the results of one of validation tests, where the output of Discrete Element Simulation (DEM)
was compared with an analytically formulated soft-contact problem. Furthermore, potential
application in more complex simulations (plate load test) is demonstrated. It shows that the
proposed approach allows for realistic yet efficient modeling of foundations purely within
the DEM framework.
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1. Introduction

The subgrade impacts pavement performance and service life (Puppala et al., 2009; Saad et
al., 2005). Hence, it is important that pavement models can accurately reflect their behavior.
The subgrade can be represented by analytical or numerical models depending on the adopted
methodology. For example, the Winkler foundation (Winkler, 1867) is a simple one-dimensional
analytical model. Well-known engineering software, such as VEROAD and BISAR programs
(Dejong et al., 1973; Hopman, 1996; Zbiciak et al., 2019), utilize an analytical solution of multi-
layered half-space. Nevertheless, the application of purely analytical models is limited to simple
geometry and load cases. Numerical methods are more versatile. The Finite Element Method
(FEM) allows for modeling of complex shapes, material properties and loading scenarios. How-
ever, the size of the FEM model needs to be limited. The Discrete Element Method (DEM),
introduced by (Cundall and Strack, 1979), is a numerical approach that simulates behavior
of granular assemblies by analyzing movements and interactions of individual particles. Con-
sequently, one can study various phenomena at the microstructural level. The DEM is widely
applied to simulate the behavior of pavement materials, such as soil and aggregate compaction
(Brzeziński and Gladky, 2022; Chen et al., 2021; Gladkyy and Kuna, 2017; Pei and Yang, 2018),
asphalt mixtures compaction (Zhu et al., 2022), creep (Quezada and Chazallon, 2022) and rut-
ting (Zhang et al., 2022). However, it comes with a high computational cost. That is why DEM
analyses often focus on a small portion of a structure, and the granular assembly needs to be
embedded by some deformable boundaries. Among various approaches, the following are often
utilized:

• Outer bodies are fixed in place. However, due to their contact stiffness, such a boundary
shows some resilience.
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• Reaction forces can be applied to outer elements (selected or automatically detected).
The force is servo-controlled based on displacement or may be adjusted to satisfy a stress
criterion (e.g., membrane simulation (Cheung and O’Sullivan, 2008)).

• Some of researchers use long interactions (Itasca’s Particle Flow Code Documentation 7.0,
2021) to set up a two-layered boundary (Pei and Yang, 2018). The outermost layer (e.g.,
bottom) is fixed in place. The inner layer is bound with external particles with long de-
formable interactions. The analyzed granular assembly contacts only the inner layer.

• The boundary can be created by a deformable assembly of particles simulating a steel or
geosynthetic net (Cheng et al., 2016; Thoeni et al., 2014).

• Coupling with the FEM (Orosz and Zwierczyk, 2020; Stránsky, 2013) or Finite Difference
Method (Jia et al., 2021) is an even more sophisticated approach. It not only allows for
creating boundary conditions for a granular assembly but also efficiently models and allows
for analyzing adjacent structures.

This paper proposes an easy and efficient approach for the modeling of the foundation in
DEM simulations. This simple and versatile approach is similar to the Winkler foundation – the
reaction force is prescribed to the element based on displacement. However, the adopted force-
-displacement relationship is described by a solution of the Burgers model (Zbiciak et al., 2017).
Hence, it can reflect basic viscoelastic phenomena: creep and relaxation. The proposed feature
was implemented in Yade (Smilauer et al., 2021), a popular open-source software for DEM
simulations. Such a procedure can be easily programmed as a user sub-routine (e.g., Python
function in the case of Yade). Nevertheless, implementation in the source code (using C++) is
more efficient and ready for use right after software installation. The Burgers model can be easily
degenerated within the proposed approach to simpler models (Zener, Kelvin-Voigt, Maxwell or
purely elastic) by prescribing certain values to parameters of the model. Thus, it can be used to
model various boundary conditions, e.g., Winkler foundation.
The paper briefly describes implementation of the viscoelastic boundary condition to Yade

software. Next, an analytical formulation of a soft-contact problem is presented, and its solution
is compared with the results of the DEM simulation. Finally, the results of examplary application
to an engineering problem (simulation of a plate load test) are demonstrated.

2. Methods

2.1. Viscoelastic boundary implementation

Yade software conducts DEM simulation iteratively. Generally, each iteration consists of the
following steps (Smilauer et al., 2021):

a) Resetting of all forces acting on bodies

b) Collision detections between the bodies

c) Computing interactions between simulated objects and their properties

d) Applying forces to the bodies, based on the assumed contact laws

e) Computing new velocities and then positions of the particles.

The implemented boundary condition is a function that can be run between steps (d) and (e).
Hence, the forces acting on the particles are modified before computation of new positions. The
function takes a list of Id’s (unique identifiers) of the bodies that should be constrained and
the viscoelastic parameters (see also Fig. 1), where: k1 – stiffness of spring 1 (the one in the
Maxwell branch) [N/m]; k2 – stiffness of spring 2 (the one in the Kelvin-Voigt branch) [N/m];
c1 – damping coefficient of dashpot 1 (the one in the Maxwell branch). A negative value turns off
the dashpot [Ns/m]; c2 – damping coefficient of dashpot 2 (the one in the Kelvin-Voigt branch).
A negative value turns off the whole Kelvin-Voigt branch [Ns/m].
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Fig. 1. Rheological scheme of the viscoelastic boundary condition

During the simulation, the initial position of the constrained body is stored in the program
memory, and the current position is known from the integration conducted in the previous
iteration. Thus, the model reaction can be obtained from a trivial solution to an algebraic set
of equations not presented in the paper. In order to make the model more versatile, the option
of dashpot deactivation was added (constraining their displacements to zero) by applying a
negative value. This way, the user can switch to models simpler than the Burgers one.

2.2. Validation test – soft-contact problem

The same task was solved with two approaches to validate the proposed implementation of
a viscoelastic boundary condition. First, the soft-contact problem was analytically formulated
and solved with a numerical integration algorithm implemented in Python SciPy library. Next,
the same issue was addressed by DEM simulation using Yade software (Smilauer et al., 2021).

2.2.1. Analytical formulation

Let us consider the description of the soft-contact phenomenon in the system visualized in
Fig. 2. The upper part of the model is composed of a rigid body (material point) possessing
mass mI and connected in series with a spring k3. The lower part of the model represents linear
viscoelastic boundary constraint having stiffness (spring) parameters k1 and k2, viscosity c2
(damper) and equivalent mass mII .

Fig. 2. Visualization of the simplified viscoelastic soft-contact model (no dashpot c1)

The unilateral constraint between the upper and lower part of the model is visualized in Fig. 2
by two bold horizontal lines representing mass-less bumpers. The gravitational acceleration is
denoted as g.
The coordinates x, ξ, y and z shown in Fig. 2 determine the displacement of material points

and deformation of the rheological structure. R denotes the force of mutual interaction between
the material point mII and the spring k3. The configuration shown in Fig. 2 represents such a
time instant when x = 0 and ξ = 0, and y = 0 and z = 0. In the case of this configuration, both
bumpers are in contact, but the spring and dashpot forces as well as the reaction R are equal
to zero.
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The description of the contact problem for the analyzed system may be obtained by formu-
lation of the material points motion and evolution of the structure deformation.
The equations describing the soft-contact problem are as follows

mI ẍ = mIg −R k3(ξ − x) = −R

mII ÿ = mIIg +R− k1(y − z) k1(y − z) = c2ż + k2z
(2.1)

and

u = y − ξ u  0 R(ũ− u)  0 ∀ũ  0 (2.2)

where Eq. (2.1)1 and Eq. (2.1)3 describe motion of the material points mI and mII , respectively,
while Eq. (2.1)2 and Eq. (2.1)4 represent the evolution of the structure deformation. Moreover,
the system of variational inequalities (2.2) defines the relationships between the coordinate
u = y − ξ and the reaction R. The coordinates y and ξ denote displacements of the mass-less
bumpers connected with the mass mII and mI , respectively. It can be proved that Eqs. (2.2)
can be visualized via the mapping shown in Fig. 3a. (see Zbiciak and Kozyra, 2015).

Fig. 3. Graph of the mapping expressed by Eqs. (2.2) (a) and a graphical solution
leading to Eq. (2.5)2 (b)

Our objective is to transform a non-linear system of Eqs. (2.1) and (2.2) to the system
of explicit non-linear differential-algebraic equations (DAE). The expected system of equations
should have the following form

ẍ = −
R

mI
+ g ÿ =

R

mII
−
k1

mII
(y − z) + g

ż = −
k1 + k2
c2
z +
k1

c2
y ξ = fξ(x, y) R = fR(x, y)

(2.3)

where Eqs. (2.3)1,2,3 can be easily obtained using Eqs. (2.1)1, 3, 4, respectively.
Let us find the functions fξ and fR describing time histories of the displacement ξ and

reaction R, respectively. To do so, Eq. (2.1)2 should be re-written in the following equivalent
form

R = k3(y − ξ) + k3(x− y) (2.4)

Above Eq. (2.4) is a linear relation between R and u := y − ξ. Thus, using Eq. (2.4) and the
mapping shown in Fig. 3a leads to the solution as follows

fξ(x, y) =

{
y if x− y > 0

x if x− y ¬ 0

fR(x, y) =

{
k3(x− y) if x− y > 0

0 if x− y ¬ 0

(2.5)

The graphical solution leading to Eq. (2.5)2 is shown in Fig. 3b where the dashed lines
represent two possible locations of the function expressed by Eq. (2.4) for x − y > 0 and
x− y < 0.
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2.2.2. DEM simulation

The solution of the above task has been simulated with Yade software. The upper body is
modeled as a sphere of radius r = 0.1m and mass mI = 4.1888 kg (resulting from the adopted
density of 1000 kg/m3). The lower body is a flat box of dimensions 0.1m×0.1m×0.0001m and
mass mII = 0.001 kg. The Zener boundary condition is applied to the box with the following
parameters: c2 = 1000Ns/m, k1 = k2 = 10000N/m. The sphere is initially placed 0.9m above
the box (1.0m measured to the sphere center), and it falls due to gravity (g = 10m/s2). Contact
stiffness, corresponding to k3 in Fig. 2, equals 10000N/m and is independent of the contact
penetration u due to the applied linear elastic contact law.
The results of this simulation are compared with the problem formulated analytically in

Section 2.2.1 and solved numerically using a Python script.

2.3. Examplary application

This Section presents a more complex simulation to show an examplary application to an
engineering problem – a granular layer resting on a viscoelastic foundation. The top of the layer
is loaded with a circular steel plate. The simulation resembles a static plate load test often used
in the construction process to determine bearing capacity of the granular layer. Nevertheless,
the simulation parameters were not calibrated to the field test results. The results are presented
for demonstration purposes and qualitative analysis.

Fig. 4. Problem definition of DEM simulation of plate test

The example, shown in Fig. 4, has been simulated in the following steps:

• Frictionless, rigid, vertical walls were generated to create a vertical funnel with a square
cross-section (1.0m×1.0m).

• A discrete bottom boundary condition was created with a layer of small prismatic (box)
elements (0.025m,0.025m,0.05m). Hence a layer of 1600 elements was created. At the
beginning of simulation, the position of the layer was fixed. However, a permanent vertical
force was applied to each box to balance the gravity influence (analogous to geostatic stress
often used in geotechnical simulation).

• Loose packing of spherical particles was generated above the bottom layer. Subsequently,
the particles fall due to gravity (g = 10m/s2) creating a layer of thickness approximately
equal to 0.4m. The radii of the generated particles ranged between 0.008m and 0.012m.

• A steel plate was then placed on top of the granular layer. A cylindrical shape of the plate
was achieved by clumping triangular facets into a right prism with twenty joining edges.
The mass of the plate was manually prescribed as 10 kg.

• After two seconds (of simulation time), the positions of all bodies were stored as the
initial positions. Furthermore, bottom elements remained fixed or were allowed to displace
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vertically depending on the scenario. In the second scenario, the vertical movements were
constrained by the viscoelastic boundary condition.

• The parameters of constraints applied to each bottom element were computed based
on its top wall area. The adopted bedding moduli (kb1 = 20N/m

3, kb2 = 10N/m
3,

cb2 = 10Ns/m
3) needed to be multiplied by the top wall area (0.025 × 0.025m2). Hence,

the boundary condition was applied to the bottom element with the following parameters:
k1 = 12500 N/m, k2 = 6250N/m, c2 = 12500Ns/m.

• Next, the plate was loaded with a linearly increasing vertical force F that reached its
maximum value Fmax = 17715 N after 1.78 s and remained constant afterwards. This load
was equivalent to stress of 250 kPa since the plate diameter was 0.3m.

• The particle displacement and reaction forces were stored for further analysis.

The granular layer consisted of only spherical particles. Nevertheless, particle interlocking
was achieved by additional rolling resistance. The contact stiffness was controlled by Hertz-
-Mindlin’s (Johnson, 1987) contact law. The remaining material parameters are summarized in
Table 1.

Table 1. Material parameters adopted for simulation.

Body type
Density Young’s modulus Poisson’s ratio Friction coeff.
[kg/m3] E [GPa] ν [–] µ [–]

Spherical particles
2650 1.0 0.25

and bottom elements 0.577
Steel plate 7800 210.0 0.25

Frictionless walls – 210.0 0.25 0.000

3. Results

3.1. Validation test results

This Section presents a comparison of numerical (DEM) simulation of the soft-contact prob-
lem with the solution of its analytical formulation defined in Section 2.2.1. Selected results are
presented in Fig. 5.
The output of the simulation reflects phenomena expected in the solution of the simulated

problem. The initial position x of the mass mI equals −0.9m, and there is no contact force
between the two bodies. As soon as the first body (mass mI) contacts the second one, the
contact force shortly increases, pushing the first body back towards its initial position. However,
some of the energy is dissipated in the process. Hence, the displacements and the maximum
forces during subsequent contact incidents diminish. After approximately 7 s of simulation, the
system reaches a static equilibrium, where the elastic reaction resulting from the displacement
of the bottom element balances the weight of the upper body. Moreover, the results present
a very good agreement between DEM simulation and analytically formulated problems. This
shows that both solutions are practically equivalent.

3.2. Results of examplary application

This Section shows the results of two scenarios of plate test simulation. In the first scenario,
the bottom elements are fixed in place. Therefore, the foundation is very stiff. However, some
deformation is allowed due to the elastic properties of contacts between the spherical particles
and bottom elements. In the second scenario, the bottom elements can move vertically. Never-
theless, the movement is constrained by the viscoelastic boundary condition. Figure 6 shows the
cross-section of the granular layer at the end of the test.
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Fig. 5. Results of the soft contact problem solution obtained with an analytical formulation and
numerical (DEM) simulation: (a) position of mass mI , (b) contact force R

Fig. 6. Displacement of particles in plate test simulation: (a) bottom elements fixed,
(b) bottom elements constrained by a viscoelastic boundary condition
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In the case of the fixed boundary condition, Fig. 6a, the plate causes only indentation at the
top of the layer. This simplified approach can be used to reflect the behavior of the granular
material in a relatively stiff container. The results obtained with the viscoelastic boundary
condition shown in Fig. 6b resemble displacements of the layer on the deformable foundation
(such as an aggregate layer on the soil). This conclusion is also supported by the results presented
in Fig. 7.

Fig. 7. Distribution of reaction forces acting on bottom elements in plate test simulation: (a) bottom
elements fixed, (b) bottom elements constrained by a viscoelastic boundary condition

The reaction force in the deformable foundation is distributed more evenly (see Fig. 7b).
There is a distinct circular area of load concentration below the plate that smoothly decreases
towards the edges. While in the case of the fixed bottom, the reaction force distribution is much
more scattered. Still, the area of the high load is approximately indicated by force concentrations.
Nevertheless, the particles at the bottom could not rearrange to redistribute the load on the
plate more evenly.

4. Conclusions

This paper presents an implementation of a viscoelastic boundary condition to Yade software.
Two simulations have been conducted to demonstrate potential applications of the proposed fea-
ture: a one-dimensional soft contact problem and the foundation of a three-dimensional granular
layer. The following conclusions can be drawn:

• The implementation works correctly. The results from DEM simulation fit the output of
the analytically formulated problem.

• It can be used to simulate foundations, particularly in geotechnical issues, pavement design,
compaction simulations, etc.

• The proposed approach allows for realistic yet efficient modeling of foundations purely
within the DEM framework.

• The current version is limited to constraining linear displacements of the elements. It can
be further developed (e.g. to constrain rotational degrees of freedom).
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